Verbesserungen an der Methode zur Bestimmung des Carbonylsauerstoffs und des Acetons

von

Dr. H. Strache.

Aus dem Laboratorium für allgemeine und analytische Chemie an der k. k. technischen Hochschule in Wien.

(Mit 2 Textfiguren.)

(Vorgelegt in der Sitzung am 24. März 1892.)

Vor Kurzem¹ veröffentlichte ich eine, über Anregung des Herrn Prof. Benedikt ausgearbeitete Methode zur Bestimmung des Carbonylsauerstoffs der Aldehyde und Ketone. Sie beruht auf der Einwirkung von überschüssigem Phenylhydrazin auf dieselben und der quantitativen Ermittelung des Überschusses durch Oxydation des letzteren mit Fehling'scher Lösung, indem der dabei freiwerdende Stickstoff gemessen wird. Die Genauigkeit der Methode liess jedoch viel zu wünschen übrig; namentlich nöthigte mich eine Reihe, am Schluss dieser Mittheilung zusammengestellter Versuche, deren Resultate oft Abweichungen bis über zwei Procent zeigten, an eine Verbesserung der Methode zu schreiten.

Meine erneuten Untersuchungen haben ergeben, dass die erwähnte Methode im Wesentlichen mit zwei Fehlerquellen behaftet war, die allerdings, nach entgegengesetzten Richtungen wirkend, sich gegenseitig annähernd aufhoben und deshalb nicht leicht zu entdecken waren, jedoch die Unsicherheit des Resultates bedingten.

¹ Monatshefte für Chemie, XII, 524.

E. Fischer hat nachgewiesen, dass bei der Oxydation des Phenylhydrazins mit kalter Fehling'scher Lösung Anilin gebildet werde. Kalte Fehling'sche Lösung konnte demnach sicher nicht allen Stickstoff des Phenylhydrazins frei machen, also war es von Vortheil, die Temperatur bei der Zersetzung des Phenylhydrazins möglichst hoch zu wählen.

Der in meiner ersten Abhandlung beschriebene Apparat gestattet jedoch nicht, beide Flüssigkeiten (Phenylhydrazinlösung und Kupferlösung) siedend heiss zu verwenden. Ich habe daher versucht, den Stickstoff durch Einfliessenlassen der zu untersuchenden Lösung in kochende Fehling'sche Lösung in einem weiter unten zu beschreibenden Apparate frei zu machen. In der That zeigte es sich, dass dann beträchtlich grössere Mengen Stickstoff entwickelt werden, dass hiemit die Zersetzung nach dem erst angegebenen Verfahren keine vollständige war.

Verwendet man nun aber reines salzsaures Phenylhydrazin und nimmt die Ablesung des entwickelten Gasvolumens und dessen Reduction auf 0° und 760mm wie gewöhnlich unter Berücksichtigung von Temperatur, Barometerstand und Tension des Wasserdampfes vor, so findet man stets zu viel Stickstoff.

Die Ursache dieser Erscheinung ergab sich bald bei der genaueren Betrachtung der Oberfläche des das Gas absperrenden Wassers. Dort ist ein kleines Tröpfchen einer öligen Flüssigkeit bemerkbar; eine Untersuchung über die Einwirkung der Fehling'schen Lösung auf Phenylhydrazin, die ich in Gemeinschaft mit Herrn stud. chem. M. Kitt ausgeführt habe und die anschliessend an diese Abhandlung mitgetheilt wird, hat uns gezeigt, dass dieses Tröpfchen Benzol ist, welches vermöge seiner hohen Dampftension das Gasvolum beträchtlich vermehrt.

In der That wird das Volum durch Zusatz von Benzol kaum vergrössert; dies beweist, dass die hohe Tension des Benzoldampfes bereits vorhanden ist.

Um den einen Fehler (unvollständige Zersetzung) zu beseitigen und den anderen (Tension des Benzoldampfes) unschädlich zu machen, verfahre ich wie folgt.

 $200~cm^3$ der Fehling'schen Lösung ($100~cm^3$ Kupferlösung, $100~cm^3$ alkalische Seignettesalzlösung). werden in einem etwa $^3/_4$ bis 1~l fassenden Kolben A zum Sieden erwärmt und aus dem Kolben B ein heftiger Strom von Wasserdampf eingeleitet, um das durch die Ausscheidung des Kupferoxyduls bedingte lästige Stossen zu vermeiden. Sobald ein starker Dampfstrom dem Entbindungsrohre R entweicht, wird dasselbe

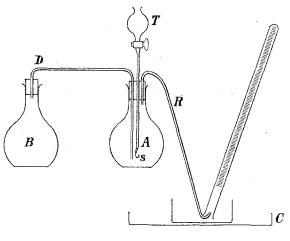


Fig. 1.

unter Wasser gebracht und das Kochen fortgesetzt, bis alle Luft aus dem Apparate durch Wasserdampf verdrängt ist. Damit dies rasch geschehe, sollen die Rohre D und R nicht weiter als bis zum Rande in die entsprechenden Pfropfen eingesteckt sein. Trotzdem bleibt es aber unmöglich, die letzten Reste der Luft auszutreiben; der dadurch entstehende Fehler kann jedoch vermittelst einer blinden Probe beseitigt werden. Ich komme später nochmals darauf zurück.

Nach dem Aufsetzen des Messrohres kann nun die Phenylhydrazin enthaltende Lösung durch den Hahntrichter T, dessen Rohr vor der Zusammenstellung des Apparates mit Wasser gefüllt wurde, eingelassen werden. Das Trichterrohr ist am unteren Ende (s) ausgezogen und hakenförmig gekrümmt, um das Aufsteigen von Gasblasen in dasselbe zu vermeiden. War

die einfliessende Lösung kalt, so darf sie nicht zu rasch eingelassen werden, da sonst durch die plötzliche Abkühlung das Sperrwasser zurücksteigen könnte.

Die Ausscheidung des Kupferoxyduls beginnt sofort unter Aufschäumen. Der Trichter wird zweimal mit heissem Wasser nachgespült. Bei genügend heftigem Kochen erfolgt die Abspaltung und Verdrängung des Stickstoffs (bis auf die wiederum nicht zum Verschwinden zu bringenden kleinen Bläschen) durch Wasserdampf so rasch, dass die ganze Operation nur 2 bis 3 Minuten beansprucht. Das Messrohr wird nun in kaltes Wasser gebracht. Um es bequem aus der Wanne, dessen Wasser sich durch den Dampf beträchtlich erhitzt hat, nehmen zu können, verdrängt man letzteres durch kaltes Wasser. Die flache Tasse C nimmt das überlaufende warme Wasser auf.

Nach Beendigung einer jeden Bestimmung kann sofort mit der nächsten begonnen werden, wenn man ein neues Messrohr aufsetzt, ohne dass der Apparat auseinandergenommen werden müsste, denn 200 cm³ Fehling'scher Lösung reichen vollständig hin, um 150 cm³ Stickstoff frei zu machen, also bequem für 3 bis 4 Carbonylbestimmungen.

Um sicher zu sein, dass das Gasvolum mit Benzoldampf gesättigt ist, lässt man mittelst einer unten umgebogenen Pipette einige Tropfen Benzol in dem Messrohr aufsteigen, bringt in einen Raum von möglichst gleichmässiger Temperatur, lässt einige Stunden stehen und liest ab.

Die Reduction des Volums auf 0° und 760 mm Druck geschieht dann unter Berücksichtigung der Tension des Benzoldampfes, vermehrt um die des Wasserdampfes.

Nach Regnault beträgt die Tension des Benzoldampfes bei

15°									60·0 mm,
20°									76 · 3,
25		_	_	_					96:1:

die folgende Tabelle wurde durch Interpoliren und Hinzuzählen der entsprechenden Wassertension berechnet.

Temperatur	Tension: Benzol-+-Wasser
15°	72·7 mm
16	76 8
17	80.9
18	85.2
19	89·3
20	93.7
21	98.8
22	103.9
23	109.1
24	114.3
25	119.7

Einige Versuche zur Gehaltsbestimmung einer Lösung von freiem Phenylhydrazin in verdünntem Alkohol ergaben die nachstehenden Resultate.¹

Ich verwendete je 10 cm³ der Lösung. Beim Versuche IV erhitzte ich vor Ausführung der Bestimmung die Phenylhydrazinlösung 10 Minuten lang im offenen Becherglase am Wasserbad, um mich davon zu überzeugen, dass sich unter diesen Umständen kein Hydrazin verflüchtige.

Zum Versuche V wurde die Lösung mit $0.5 \, cm^3$ Eisessig $10 \, \text{Minuten}$, bei VI mit $2.5 \, cm^3$ Eisessig $1/2 \, \text{Stunde}$ am Wasserbade erwärmt, um zu erkennen, dass auch dieser ohne Einwirkung sei.

V = abgelesenes Volum,

t = Temperatur,

Bo = Barometerstand,

N = Gewicht des entwickelten Stickstoffs.

¹ Es wurde vor der Ablesung kein Benzol zugesetzt, sondern angenommen, dass das Gas schon mit Benzoldampf gesättigt sei. Die Resultate dürften daher um Weniges zu niedrig sein, und besitzen noch nicht die wünschenswerthe Genauigkeit.

·	V cm³	<i>t</i> °	Во тт	Ng	⁰ / ₀ Phenyl- hydrazin
I	31.7	15.8		0.03329	1.285
II	31.9	15 8	1/	0.03354	1.294
III	33.7	20.0	740.5	0.03404	1.313
IV	34.2	20.0	748.5	0.03455	1.333
v	36.7	21.2		0.03656	1.412
VI	31.5	16.8		0.03267	1.261
;]					

Reines salzsaures Phenylhydrazin lieferte bei der Zersetzung nach dieser Methode die folgenden Zahlen.

g = Gewicht des verwendeten salzsauren Phenylhydrazins,

Vo = reducirtes Volum,

Vo' = reducirtes Volum, berechnet auf 1 g salzsaures Phenylhydrazin.

Die übrigen Bezeichnungen wie bei der vorhergehenden Tabelle.

	ď	V cm³	t °	Bo .	Vo	V	o'	0/0	N
	g	Vene	ı	тт	cm³	gef.	ber.	gef.	ber.
I	0.4164	82.8	19.8	752.0	67.0	160.8		20.2	
II	0.5523	106.0	19.8	752.0	85.7	155.2	154.0	19.5	
Ш	0.3687	73.5	20.2	754.2	59.5	161.3	154.6	20.3	<u> </u>
IV	0.3967	78.3	20.2	754.2	63.3	159.7	(gefun-	20.1	10-4
V	0.1715	33.0	18.2	757.0	27:3	159.2	den im	20.0	19.4
VI	0.0834	16.2	18.2	757.0	13.4	161	Mittel:	20.2	
VII	0.3062	59.7	18.2	757:0	49.4	161 • 4	159.7	20.3	
VIII	0.3974	76.3	18.2	757.0	63.2	158.9		20.0	

Es werden also auf diese Weise sehr constante, wenn auch etwas zu hohe Resultate erhalten; dieser letztere Fehler ist durch die oben erwähnte unvollkommene Verdrängung der Luft bedingt, lässt sich aber für die Bestimmung des Carbonylsauerstoffs unschädlich machen, wenn man nicht die nach der Theorie berechnete, aus 1 g salzsaurem Phenylhydrazin entwickelte Stickstoffmenge (154.6) der Berechnung zu Grunde legt, wie dies früher geschah, sondern dieselbe für einen gegebenen Apparat unter gegebenen Bedingungen durch eine blinde Probe ermittelt (im vorliegenden Falle also 160 cm³) und dann annähernd gleiche Mengen salzsauren Phenylhydrazins zur Einwirkung auf die Aldehyde und Ketone verwendet.

Alle übrigen, hier nicht besprochenen Operationen zur Bestimmung des Carbonylsauerstoffs bleiben die gleichen, wie bei der erst angegebenen Methode.

Ich stelle im Folgenden die Resultate zusammen, die ich mit diesem abgeänderten Verfahren erhalten

s = Gewicht der Substanz,g = Gewicht des salzsauren Phenylhydrazins.

	£	:			,		,	σ. 160	1/0	0 %
Substanz	Formel	Losungsmittel	S	po		+2	Bo	-2 Vo	gefunden	2 Vo gefunden berechnet
Aceton.	ALAMA BEAUTY		0.792	2.8201	2.8201 89.2 17.4 745 305.1	17.4	745	305·1	27.65	
Aus der Bisulfit-	$(CH_3)_2CO$	Wasser	0.792		52.41	17.4	745	52.41 17.4 745 305.31	27.67	65.22
verbindung dar- gestellt			0.792	3.1276	57.81	17.4	745	57.81 17.4 745 311.11 28.19	28.19	
							_		_	
1 Von der auf	¹ Von der auf 100 cm³ verdünnten Reactionslösung wurden nur 25 cm³ zur Zersetzung verwendet, daher ist hier einzusetzen.	en Reactionslösu	ng wurder	ก nur 25 <i>cพ</i>	13 zur Zers	setzung .	verwenc	let, daher	ist hier cir	zusetzen:

0	berechnet		10.81		10.67	2.55
0 %	gefunden berechnet	10.83 10.89 10.17	9·71 10·02 10·09	10·39 9·76 10·17	10.08	7.27
8.160	-2 1/0	40.2 34.1 53.7	29·0 39·7 46·1	32·7 29·2 34·6	41.1	24.0
BA	DO	748 748 748	748 748 748	743 743 743	762	762
*		15·6 15·6 15·6	19.8 19.8 19.8	17·6 17·6 17·6	16.2	17.0
- 11	>	38.7 36.5 40.8	32·1 37·6 32·2	36·1 48·9 33·8	25.6	34.5
۶	20	0.6560 0.5948 0.7627	0.5036 0.6256 0.6124	0.5720 0.6806 0.5609	0.5292	0.5136
	s	0.2663 0.2247 0.3790	0.2143 0.2844 0.3278	0.2259 0.2149 0.2442	0.2926	0.2370
1074	Losungsmittel	ohne Lösungs- mittel	verdünnte Essigsäure	Alkohol	Alkohol	Alkohol verdünnte Essigsäure
ſ.	Formel		$c_{ m 6H_4}$		Cho C ₆ H ₃ —CH ₂	С ₆ Н ₅ —СО
	Substanz		Cuminol		Piperonal	Benzoïn

für 1 <i>0</i> 9·64
10.30
67.5 66.2
744
19.6 19.6 18.8
36.8 21.5 31.7
0.8158 1.1001 0.5225 0.6368 0.4624 0.7344
0.5225 0.4624
Alkohol verdünnte Essigsäure ohnc Lösungs- mittel
$C_{10}H_{14}O_{2}$?
Condensations- product des Acet- aldehyds, darge- stellt von A. v. Bitho und Zeisel?

Merkwürdige Resultate ergaben Benzil und Benzophenon. Beide gaben bei Verwendung von Alkohol als Lösungsmittel gerade die Hälfte der berechneten Menge an Carbonylsauerstoff. Beim Benzil ist dies vielleicht dadurch zu erklären, dass eben nur eine der beiden Ketongruppen in Reaction tritt, auch wurde bei Anwendung von Eisessig als Lösungsmittel die »Carbony1zah1« (gefundene Procente Carbonylsauerstoff)

¹ Es wurde die gesammte Reactionslösung zersetzt, daher: g. 160-Vo.

² Siedepunkt 159-163° bei 16·5 mm Druck. Noch nicht veröffentlicht; Herr Prof. Zeisel hatte die Freundlichkeit, mir diese Substanz zur Untersuchung zu übergeben. Die beiden ersten Zahlen sind bei 1/4stündigem, die letzte bei zweistündigem Erwärmen auf dem Wasserbade erhalten. Beim Kochen mit absolutem Eisessig wurden die Zahlen 13·78 und 14·65 % O erhalten.

etwas erhöht, noch mehr beim Kochen mit concentrirtem Eisessig unter Zusatz von Chlorzink, doch sind diese letzteren Zahlen nicht verlässlich, weil salzsaures Phenylhydrazin allein unter diesen Umständen auch ein wenig angegriffen wird, wie ein besonderer Versuch zeigte.

Bei Benzophenon hingegen bleibt das merkwürdige Verhalten einstweilen ohne Erklärung.

des Erhitzens bei den einzelnen Proben zwischen 1/4 bis 21/2 Stunden variirte, jedoch ein wesentlicher Zu den nachstehenden Angaben über Benzil und Benzophenon ist noch zu bemerken, dass die Dauer Einfluss der Zeit auf das Ergebniss nicht beobachtet wurde.

1		 									
0 %	berechnet	für 10:	29.2								
	gefunden berechnet	. 7.88	6.26	7.63			80.6	8.30	10.05	29.6	
8.160	-2 Vo	29 · 1	17.9	34.0			21.6	38.0	41.6	38.4	
R		762	740	743			762	734	734	734	
+		17.6	17.0	16.0			17.6	17.6	17.6	17.6	
Λ	•	39.6	52.0	32.8			54.4	56.6	39.3	36.5	
ь	S	0.5964	0.6422	0.5521		-	0.7050	0.5045	0.6548	0.6033	
S	,	0.2651	0.2053	0.3196			0.1708	0.3284	0.2970	0.2850	
Lösungsmittel	0		Alkohol				in wenig Eis- 0.1708	essig gelost,	PhLösung er-	wärmt	
Formel						$(C_6H_5)_2(CO)_2$					
Substanz			Benzil	Verbrennung:	79·58 ⁰ / ₀ C.	$5.14^{0}/_{0}$ H,	berechnet:	4.760/ H	110/0.1		

	für 2 0:	47 01				8.79
9.16	11.04	12.12	13.35	13.77	4.01	4.28
37.4	44.2	45.2	43.8	59.2	18.0	23.3
742	742	755	755	255	762	762
19.8	19.8	18.8	18.8	18.8	18.8	18.8
38.1	36.2	32.7	37.4	14.0	42.5	37.4
0.6144	0.6370	0.6181	0.6577	0.5136	0.5534	0.5334
0.2931	0.2873	0.2676	0.2354	9808.0	0.3223	0.3908
beides in Eisessig gelöst, mit 5g trockenem NaAc ge- kocht	ebenso mit 1g NaĀc und 1g Zn Cl ₂ Ebenso mit:	2g Zn Cl ₂	$5 g \operatorname{ZnCl}_2$	$10\mathrm{g}~\mathrm{ZnCl_2}$	Alkohol	in wenig Eisessig gelöst, mit wässeriger PhLösung er- wärmt
	$(C_6H_5)_2(CO)_2$					$(C_6H_6)_2$ CO
Benzil	Verbrennung: 79·58%, C. 5·14%, H, berechnet: 80·00%, C.	4.760/ ₀ H	ř		Benzophenon Verbrennung:	85.620/0 5.760/0 H, berechnet 85.7 0/0 C 5.5 0/0 H

hydrazin genauer zu verfolgen. Ich habe jedoch nur vier Versuche angestellt, die mir zeigten, dass beide Von Interesse wäre es auch, das Verhalten von Phloroglucin und Hexamethylphloroglucin zu Phenyldarauf einwirken, und zwar das Phloroglucin sehr leicht, unter Ausscheidung einer braunschwarzen Substanz, sein Hexamethylderivat dagegen nur in geringem Masse. Es ist jedoch nicht möglich, aus diesen wenigen Versuchen irgend einen weiteren Schluss zu ziehen.

Als Lösungsmittel wurde Alkohol verwendet.

Formel Dauer des Erhitzens 1 $C_6H_6O_3 \qquad 1/4 \text{ Stunde}$ $C_6(CH_3)_6O_3 \qquad 1/4 \text{ Stunde}$	$\begin{bmatrix} s \\ 1 \end{bmatrix}$ $\begin{bmatrix} s \\ g \end{bmatrix}$ $\begin{bmatrix} V \\ t \end{bmatrix}$ $\begin{bmatrix} t \\ Bo \end{bmatrix}$ $\begin{bmatrix} g,160 \\ -2 \end{bmatrix}$ $\begin{bmatrix} 0/0 \\ gefunden \end{bmatrix}$ berechnet	0.2627 1.0618 35.0 19.4 747 113.6 31.04 für 30 0.2088 1.0443 13.9 18.2 745 144.5 49.68 38.10	0.2449 1.0665 98.0 19.4 747 12.9 3.79 für 3 0 0.1880 0.7890 71.5 18.2 745 10.0 3.82 22.86
	auer des s	0.2627	0.2449
			<u> </u>

Zum Schlusse will ich noch die Resultate von einigen, bisher noch nicht veröffentlichten Bestimmungen anführen, die ich noch nach der ursprünglichen Methode ausgeführt und berechnet habe.

¹ Am Wasserbade.

² Durch die freundliche Vermittlung des Herrn Prof. Zeisel erhalten.

Ο 0/0	berechnet	14.04	10.81	82.9	10.67	7.55	10: 7.62 20: 15:24	18.18
0	gefunden	16.5	11.1	6.3	13.3	6.4	8.8	17.6
g. 154.63	_2 Vo	65.0	59.0	50.1	90.1	36.8	45.9	94.2
	Во	757.0	739·1 741·1	756.5	751.7	742.9	745.2	744.3
	t ₂	19.1	17.5	17.0	16.7	20.0	20.8	18.1
;		14.6	23.4	19.7	27.5	22.8	37.4	34.8
·	ρ0	0.5926	0.6526	0.5583	0.9080	0.5022	0.7270	1.0142
	S	0.2835	0.3825	0.3876	0.4807	0.4121	0.3728	0.3848
	Formel	CH ₃ (CH ₂) ₅ CHO	C_6H_4 CHO	CH=CH-C ₆ H ₅ CHO.NaHSO ₃	C ₆ H ₃ CH ₂ O	Сень. СО. СНОН. Сень	(C ₆ H ₅) ₂ (CO) ₂	СН3.СО.СООН
,	Substanz	Önanthol	Cuminol	Zimmtaldchyd- schwefligsaures Na	Piperonal	Benzoin	Benzil	Brenztraubensäure

	12.7	75.01	746.5	19.3	10·01 18·0 30·8 19·3		0.3502	CH ₂ COOH
13.80		61.1	746.5	17.5	32.6 17.5 10.01 18.0	0.777.0	0.4254	
	15.2	83.2	756.6	17.0	46.2 17.0	0.3807 1.0871	0.3807	CO—CH ₃
perecnner	napuniag							
80 8.154.63 0/0 0 2 Vo gefunden berechnet	o gefunden	g.154.63 -2 Vo	Bo	+2	Δ	pô	s	
0								

Substanzen hervorgeht, dass die Methode zur quantitativen Bestimmung des Carbonylsauerstoffs wohl für Ich habe nur noch zu bemerken, dass aus den bisher bestimmten Carbonylzahlen verschiedener die meisten Substanzen anwendbar, jedoch auf manche Körperclassen mit Vorsicht anzuwenden ist.

der Constitution verschiedener Verbindungen seine Dienste leisten wird.

Immerhin glaube ich annehmen zu dürfen, dass das besprochene Verfahren bei der Erschliessung

Chinone, ferner Substanzen mit der Gruppe —CO—NH— wurden bisher noch nicht geprüft,

¹ Von der auf 100 cm³ verdünnten Lösung wurden nur 20 cm³ zur Zersetzung verwendet, daher ist hier einzusetzen: g.154.63-5 Vo.

Quantitative Bestimmung des Acetons.

Natürlich liefert diese abgeänderte Methode zur Bestimmung des Carbonylsauerstoffs in ihrer Anwendung auf die Bestimmung des Acetons viel verlässlichere Resultate, als die frühere, und ihre Durchführung beansprucht so wenig Zeit, dass man bequem im Laufe einer Stunde drei bis vier Acetonbestimmungen (inclusive Wägungen) nebeneinander vorbereiten und hintereinander in den Zersetzungsapparat bringen kann.

Alle Einzelnheiten ergeben sich von selbst aus allem Vorhergesagten, doch will ich dieselben hier noch einmal kurz zusammenfassen:

- 1. Abwägen des salzsauren Phenylhydrazins (Gewicht g); Zusatz der circa 1 · 5fachen Menge essigsauren Natrons, Lösen in warmem Wasser.
- 2. Zufliessenlassen einer gemessenen Menge $(s cm^3)$ der zu untersuchenden Acetonlösung.
 - 3. Viertelstündiges Erwärmen auf dem Wasserbade.
- 4. Abkühlen, Verdünnen auf 100 cm³, Abpipettiren von 50 cm³, Einbringen in den Hahntrichter.
- 5. Einfliessenlassen in die siedende Fehling'sche Lösung, Auffangen des Stickstoffs.
- 6. Einführen einiger Tropfen Benzol in das Messrohr nach einigem Stehen: Ablesung (V, t, B).

Der Acetongehalt A in Grammen ergibt sich aus der Formel: $A = [g \cdot 160^{1} - 2 \text{ Vo}] \cdot 0.002595$.

Die Resultate sind meistens bis auf mehrere Hundertstel-Procente genau, selten zeigen sich Abweichungen von einem Zehntel-Procent.

Die Lösung I wurde durch Verdünnen von 50 cm³ reinem Aceton (spec. Gew. bei 19·8°: 0·792) auf 500 cm³ gewonnen.

II und III sind verdünntere Lösungen,

IV wurde durch fünffache Verdünnung von II und

V durch zehnfache Verdünnung von III gewonnen;

VI erhielt ich durch zehnfache Verdünnung der letzteren Lösung (V).

¹ Vergl. Seite 317.

Lösung	S. CM3	g	V	t	Во	g.160 —2 Vo	⁰ / ₀ Aceton		
							gefunden	berechnet	
I	10	2.8201	89.2	17.4	745	305.1	7:917		
	10	2.9812	52.41	17.4	745	305.31	7 923		ŀ
	10	3.1276	57.81	17.4	745	311.11	8.070	7.92	-
	10	2.8743	100.0	19 2	749	297 · 9	7 · 7312		
II	20	0.7106	28.6	20.2	732	69 · 1	0.896		
	10	0.3387	15.8	21.6	739	29.7	0.770	(Mittel:	
	20	0.7604	31.2	21.6	739	73.2	0.950	0.880)	
	50	1.3335	25.2	21.6	739	174.2	0.904		
									-
III	10	0.7723	31.0	18.6	738	77.0	1 999		
	10	0.6191	17.0	18.2	733	71.9	1.866	(Mittel:	
	10	0.7136	26.7	18.2	733	71.6	1.859	1.915)	1
	10	0.6740	20.6	19.4	747	74.6	1.937		
IV	50	0.4221	23:9	20.6	736	30 · 1	0.156		
	50	0.4132	23.8	20.6	736	28.8	0.150	0.176	-
	50	0.2721	13.8	20.6	736	21.9	0.109		
V	50	0.3646	18.3	19.0	747	28.7	0.149	0.192	
	50	0.3728	18.3	19.0	747	30.0	0.156	0 100	-
VI	50	0.0627	3.2	20.2	753	4.87	0.0254	0.0192	

Um sehr stark verdünnte Acetonlösungen zu analysiren, treibt man aus einer grösseren Menge der Lösung das Aceton durch Kochen unter gleichzeitigem Durchsaugen eines Luftstromes aus und fängt dasselbe in der Lösung von essigsaurem Natron und salzsaurem Phenylhydrazin, die sich in einem

¹ Nur ein Viertel der Lösung zersetzt, daher g. 160-4 Vo.

² Nach achttägigem Stehen der Acetonlösung.

zweckentsprechenden Absorptionsrohre befindet (siehe beistehende Figur), auf.

A enthält die zu prüfende Lösung, B die Phenylhydrazinlösung. Kühlung ist hiebei nicht nothwendig.

5 cm³ der Lösung V (enthaltend 0.0096 g Aceton), auf 2 l mit Wasser verdünnt und eine Viertelstunde im Sieden erhalten, gaben hiebei schon alles Aceton ab.

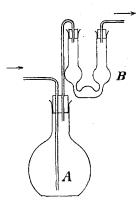


Fig. 2.

Zur Zersetzung wurde die Gesammtmenge der im U-Rohre befindlichen Flüssigkeit verwendet.

$$g = 0.0653 \, g,$$
 $V = 8.9 \, cm^{3},$
 $t = 20.0^{\circ},$
 $Bo = 750 \, mm,$
 $g.160 - Vo = 3.3 \, cm^{3}.$

Gefunden

Berechnet

0/0 Aceton. 0.000428

Mit der quantitativen Bestimmung des Acetaldehydes und der Bestimmung des Acetons neben Aldehyd bin ich noch beschäftigt; wie ein Vorversuch zeigte, scheint sich auch Alkohol durch Überführung in Aldehyd und Essigsäure quantitativ bestimmen zu lassen.

0.00048